Introduction to Collaborative Coding with GitHub

This work by Elizabeth Waterfield, Malika Ihle, and Sarah von Grebmer zu Wolfsthurn is licensed under a CC-BY 4.0 Creative
Commons Attribution 4.0 International License.

These practical exercises build on your existing knowledge on GitHub for collaborative coding by using universal Git commands in
your system’s terminal — a way to perform actions more quickly and use Git from any device or setup, because the terminal doesn’t
depend on RStudio. You will use the same local repository cloned during the lesson, originally forked from LIMU OSC's Collaborative-
RStudio-GitHub repository.

Using the terminal Practical exercise 1

e Every operating system uses a different terminal. Make and check changes with: git status
Windows — Git is used through Git Bash, which e First, you need to make your changes.

installs automatically with Git for Windows.))

To find it, search for ‘Git Bash’ in the Start Menu. |:| In the project folder on your local device, open the

“Params” folder.

MacOS - Git is used through the built-in >
Terminal app, which you can find by searching
for “Terminal’.

|:| Right-click the “params_tmpl” R file and select ‘Copy’
then right-click again and select ‘Paste’ to place a copy of the
R file in the local folder.

|:| Right click the copied R file then click ‘Rename’ to give it a
new name, different from the one used in the lesson.

Linux — Git is used through the system’s terminal.
The name depends on which version of Linux
you’re using (for example, GNOME Terminal or
Konsole), but all work the same for Git commands.

|:| Open the copied R file on your local device and make new
parameters by editing the ‘sig2’, ‘species.name’, and ‘color’
The interface may differ, but Git works similarly across all elements.

terminals. This consistency improves reproducibility as you

can now run the same steps on any device |:| Save the edited file by clicking ‘File’ then ‘Save’.

e How does it work? e Now we will check these changes in the terminal.

Simply type in the git command and hit ‘Enter”. |:| Open your Tern.1|nal and set the working direcFory to the
folder on your device that holds the cloned repository.
e Tip: Keyboard shortcuts work differently in some

terminals [J Enter the command git status and hit ‘Enter’ to check

what changes are there in the local copy that aren’t on the
For these activities, follow this: remote copy.
To copy, right-click - select ‘Copy’

To paste, right-click > select ‘Paste’ e These changed files will show up in red.

For example:

Setting the working directory tracied £110cs

(use "git add <file>..." to include in what will be committed)

The working directory is the folder where the Git
commands will be executed. This means the commands
you enter will apply to the files in this folder. Untracked files in Git are files that exist in your project folder
but Git is not yet monitoring them. For Git to track these
files, you need to commit them.

e Do this by using the “change directory” command: cd
Type in cd followed by the path to your project.

For example:

*

$ cd /c/Projects/Collaborative-RStudio-GitHub

e Tip: If the path to your folder has spaces between the
words, wrap the path in quotation marks.

For example:

$ cd "/c/Projects/Collaborative RStudio GitHub" OSC \/ “ FORRT

LMU Open Science Center

https://github.com/lmu-osc/Collaborative-RStudio-GitHub/tree/main
https://github.com/lmu-osc/Collaborative-RStudio-GitHub/tree/main

Introduction to Collaborative Coding with GitHub

Practical exercise 2

Stage and commit with: git add and git commit -m
You have made new changes! Now you must commit them.

|:| In the terminal, stage all the changes by entering the
command: git add .

When you enter the command git status again, the files
will now be green:

Changes to be committed:
(use "git restore --staged <file>...

"

to unstage)

This means they are staged to commit.

|:| Enter the command git commit -m followed by a
commit message in quotation marks describing the changes
made.

" "

Added a new parameter

For example: CIEARSSLA R

These changes are now committed.

Practical exercise 3

Push and pull changes with: git push and git pull

|:| Push your changes to your forked remote repository on
GitHub by entering the command: git push

|:| Now go to GitHub, refresh the page and your changes
should appear.

To pull the changes made by other contributors from the
remote repository on GitHub to your local copy on your
device, enter the command: git pull

Extra 1: git clone

Clone a repo with: git clone + “repository URL”

It is possible to use a simple Git command to clone a remote
repository to your local device. Here’s how:

On GitHub, copy the repository URL
(Hint: Find the URL by clicking the button)

In the terminal, set the working directory to the destination
on your device where you would like this clone to be.

Type the command git clone followed by the URL for the
repository. Here is an example:

$ git clone https://github.com/Imu-osc/Collaborative-RStudio-GitHub.git

There should now be a copy of the repository in the folder on
your local device.

Extra 2: Common Git commands

e Here is a summary of 5 common Git commands that you
can use on all terminals.

git status: compares the files on the local and remote
repositories to show the changes made, staged files, and
untracked files.

git add: tells Git which changes you want to include in the
next commit.

git commit: saves a snapshot of your staged changes to the
project history.

git push: uploads the commits to the remote repository.

git pull: downloads and applies the latest changes from the
remote repository to the local repository.

e For a quick overview of more Git commands, check out
this Git Cheat Sheet: https://git-scm.com/cheat-sheet

OSC\/“ FORRT

LMU Open Science Center

https://git-scm.com/cheat-sheet

	Widget: Off
	_2: Off
	_3: Off
	_4: Off
	_5: Off
	_6: Off
	_7: Off
	_8: Off
	_9: Off
	_10: Off
	_11: Off

